Skip to main content

Suppose that the marginal product of the last worker employed by a firm is 40 units of output per day and the daily wage that the firm must pay is...

If you are maximizing output for fixed cost or minimizing cost for fixed output (there is a duality that makes these two optimization problems equivalent), the price you pay for a given amount of marginal product will be the same. So if they were maximizing profit, they would be paying the same rate for marginal product of capital as for marginal product of labor.

I can prove this using a Lagrangian; I will as a sort of "appendix" below. If that's too advanced for what you're familiar with, just don't worry about that appendix and take it as given that price of marginal product should be equal for maximizing profit.

But they are not; they have too much labor, not enough capital.

Since their marginal product of labor is 40 units per day, for which they are paying a wage w of $20 per day, this is how much they're paying for marginal product of labor:

w/MPL = 20/40 = $0.50 per unit

Since their marginal product of capital is 120 units per day, for which they are paying rent r of $30 per day, this is how much they're paying for marginal product of capital:

r/MPK = 30/120 = $0.25 per unit

Appendix:

For output function f(K,L) of products sold at price P, we are maximizing profit PF. We pay rent r on capital and wage w for labor; thus our constraint is r K + w L = C where C is a constant, how much money we have to spend. (Its precise value won't matter for the theorem, so long as it is a constant.)

PF = P * f(K,L) + lambda (rK + wL - C)

dPF/dK = 0 = P * f_K + lambda r
dPF/dL = 0 = P * f_L + lambda w

Solve for lambda in each case:
lambda = - P * f_K / r = - P * f_L / w
f_K / r = f_L / w
r/f_K = w/f_L
where the partial derivatives f_K and f_L are just the marginal products of capital and labor respectively.
r/MPK = w/MPL.

Comments

Popular posts from this blog

Is there a word/phrase for "unperformant"?

As a software engineer, I need to sometimes describe a piece of code as something that lacks performance or was not written with performance in mind. Example: This kind of coding style leads to unmaintainable and unperformant code. Based on my Google searches, this isn't a real word. What is the correct way to describe this? EDIT My usage of "performance" here is in regard to speed and efficiency. For example, the better the performance of code the faster the application runs. My question and example target the negative definition, which is in reference to preventing inefficient coding practices. Answer This kind of coding style leads to unmaintainable and unperformant code. In my opinion, reads more easily as: This coding style leads to unmaintainable and poorly performing code. The key to well-written documentation and reports lies in ease of understanding. Adding poorly understood words such as performant decreases that ease. In addressing the use of such a poorly ...

Is 'efficate' a word in English?

I routinely hear the word "efficate" being used. For example, "The most powerful way to efficate a change in the system is to participate." I do not find entries for this word in common English dictionaries, but I do not have an unabridged dictionary. I have checked the OED (I'm not sure if it is considered unabridged), and it has no entry for "efficate". It does have an entry for "efficiate", which is used in the same way. Wordnik has an entry for "efficate" with over 1800 hits, thus providing some evidence for the frequency of use. I personally like the word and find the meaning very clear and obvious when others use it. If it's not currently an "officially documented" word, perhaps its continued use will result in it being better documented.