`sum_(n=1)^oo(1/n-1/(n+2))`
`S_n=(1/1-1/(1+2))+(1/2-1/(2+2))+(1/3-1/(3+2))+..........+(1/(n-1)-1/(n+1))+(1/n-1/(n+2))`
`S_n=(1-1/3)+(1/2-1/4)+(1/3-1/5)+.......+(1/(n-1)-1/(n+1))+(1/n-1/(n+2))`
This sum is a telescoping series,
`S_n=(1+1/2-1/(n+1)-1/(n+2))`
`sum_(n=1)^oo(1/n-1/(n+2))=lim_(n->oo)S_n`
`=lim_(n->oo)(1+1/2-1/(n+1)-1/(n+2))`
`=(1+1/2)`
`=3/2`
So the series converges.
Comments
Post a Comment