`int (sec^2x)/(tanx(tanx+1)) dx` Use substitution and partial fractions to find the indefinite integral
`int(sec^2(x))/(tan(x)(tan(x)+1))dx`
Let's apply integral substitution: `u=tan(x)`
`du=sec^2(x)dx`
`=int1/(u(u+1))du`
Now let's create the partial fraction template for the integrand,
`1/(u(u+1))=A/u+B/(u+1)`
Multiply the above equation by the denominator,
`1=A(u+1)+B(u)`
`1=Au+A+Bu`
`1=(A+B)u+A`
Equating the coefficients of the like terms,
`A+B=0` ------------(1)
`A=1`
Plug in the value of A in the equation 1,
`1+B=0`
`=>B=-1`
Plug back the values of A and B in the partial fraction template,
`1/(u(u+1))=1/u+(-1)/(u+1)`
`=1/u-1/(u+1)`
`int1/(u(u+1))du=int(1/u-1/(u+1))du`
Apply the sum rule,
`=int1/udu-int1/(u+1)du`
Use the common integral:`int1/xdx=ln|x|`
`=ln|u|-ln|u+1|`
Substitute back `u=tan(x)`
and add a constant C to the solution,
`=ln|tan(x)|-ln|tan(x)+1|+C`
Comments
Post a Comment