`int_0^5x^2/(5+2x)^2dx`
First let's evaluate the indefinite integral,
Use the following from the integration table:
`intu^2/(a+bu)^2du=1/b^3(bu-a^2/(a+bu)-2aln|a+bu|)+C`
Here we have `a=5,b=2`
`intx^2/(5+2x)^2dx=1/2^3(2x-5^2/(5+2x)-2(5)ln|5+2x|)+C`
`=1/8(2x-25/(5+2x)-10ln|5+2x|)+C`
So, `int_0^5x^2/(5+2x)^2=1/8[2x-25/(5+2x)-10ln|5+2x|]_0^5`
`=1/8{[2(5)-25/(5+2(5))-10ln|5+2(5)|]-[2(0)-25/(5+2(0))-10ln|5+2(0)\]}`
`=1/8{[10-25/15-10ln|15|]-[-25/5-10ln|5|]}`
`=1/8(10-5/3-10ln15+5+10ln5)`
`=1/8(15-5/3-10(ln15-ln5))`
`=1/8(40/3-10ln(15/5))`
`=1/8(40/3)-(10/8)ln3`
`=5/3-5/4ln3`
`~~0.2934`
Comments
Post a Comment