The formula of arc length of a parametric equation on the interval `alt=tlt=b` is:
`L = int_a^b sqrt((dx/dt)^2+(dy/dt)^2) dt`
The given parametric equation is:
`x=t`
`y=t^5/10 + 1/(6t^3)`
The derivative of x and y are:
`dx/dt = 1`
`dy/dt =(5t^4)/10 + (-3)/(6t^4) =t^4/2-1/(3t^4)`
So the integral needed to compute the arc length of the given parametric equation on the interval `1 lt=tlt=2` is:
`L=int_1^2 sqrt(1^2 + (t^4/2-1/(3t^4))^2) dt`
The simplified form of the integral is:
`L= int_1^2 sqrt(1 + t^8/4-1/2+1/(4t^8))dt`
`L=int_1^2 sqrt(t^8/4+1/2+1/(4t^8))dt`
`L=int _1^2 sqrt((t^16+2t^8+1)/(4t^8))dt`
`L=int_1^2 sqrt( ((t^8+1)^2)/(4t^8))dt`
`L=int_1^2 (t^8+1)/(2t^4)dt`
Evaluating this yields:
`L=int_1^2 (t^4/2 + 1/(2t^4))dt`
`L= int_1^2 (t^4/2+ t^(-4)/2)dt`
`L= t^5/(2*5) + t^(-3)/(2*(-3))` `|_1^2`
`L= t^5/10-1/(6t^3)` `|_1^2`
`L= (2^5/10 - 1/(6*2^3))-(1^5/10-1/(6*1^3))`
`L=(32/10-1/48) - (1/10 - 1/6)`
`L=(768/240-5/240)-(3/30-5/30)`
`L=763/240+2/30`
`L=763/240+16/240`
`L=779/240`
Therefore, the arc length of the curve is `779/240` units.
Comments
Post a Comment