`int(-3x)/(x^2+3)^(3/2)dx`
Take the constant out,
`=-3intx/(x^2+3)^(3/2)dx`
Apply integral substitution:`u=x^2+3`
`=>du=2xdx`
`=-3int1/(u)^(3/2)(du)/2`
Take the constant out,
`=-3/2int1/u^(3/2)du`
`=-3/2intu^(-3/2)du`
Apply the power rule,`intx^adx=x^(a+1)/(a+1), a!=-1`
`=-3/2(u^(-3/2+1))/(-3/2+1)`
`=-3/2u^(-1/2)/(-1/2)`
`=-3/2(-2/1)u^(-1/2)`
`=3/u^(1/2)`
Substitute back `u=x^2+3`
`=3/(x^2+3)^(1/2)`
Add a constant C to the solution,
`=3/sqrt(x^2+3)+C`
Comments
Post a Comment