Given to solve,
`int (1+cos(alpha))/sin(alpha) d alpha`
let `alpha = x` (just for convenience)
so,
`int (1+cos(alpha))/sin(alpha) d alpha`
= `int (1+cos(x))/sin(x) dx`
= `int (1/sinx)dx +int cos(x)/sin(x) dx`
=` int cscx dx+ int cot(x) dx`
we know from the general formulas that
`int cscx dx = ln(tan(x/2))`
and
`int cot(x) dx = ln(sinx)`
so ,
`int cscx dx+ int cot(x) dx = ln(tan(x/2)) + ln(sinx) +c`
but `x= alpha `
so,
`int (1+cos(alpha))/sin(alpha) d alpha`
`=ln(tan((alpha)/2)) + ln(sin(alpha)) +c`
Comments
Post a Comment