Given ,
`y'= tan^(-1) (x/2)`
we have to get the y
so ,
=> `y = int (tan^(-1) (x/2)) dx`
By Applying the integration by parts we get the solution
so,
let` u=tan^(-1) (x/2) => u'= (tan^(-1) (x/2) )'`
let` t= x/2 `
=> `u' =(du/dt)*(dt/dx) = (d ((tan^(-1)(t))/(dt))(d/dx (x/2))`
=`(1/(t^2+1))*1/2`
=`(1/((x/2)^2+1))*1/2`
=`(4/(x^2+4))*1/2`
=`2/(x^2+4)`
and `v'=1 =>v =x`
now by Integration by parts ,
`int uv' dx= uv-int u'v dx`
so , now
`int (tan^(-1) (x/2))dx`
`= xtan^(-1) (x/2) - int 2x/(x^2+4)dx`
let `x^2+4 = q`
=> `2x dx= dq`
so ,
`int (2x)/(x^2+4)dx = int 1/q dq = ln(q)+c =ln(x^2+4)+c`
= ` x(tan^(-1) (x/2)) -ln(x^2+4)+C`
Comments
Post a Comment