`y = e^(x/2) + e^(-x/2) , y = 0 , x = -1 , x = 2` Find the volume of the solid generated by revolving the region bounded by the graphs of the...
Given
`y=e^(x/2)+e^(-x/2), y=0 x=-1,x=2`
so the solid of revolution about x-axis is given as
`V = pi * int _a ^b [R(x)^2 -r(x)^2] dx`
here
`R(x) = e^(x/2)+e^(-x/2)`
`r(x)=0` and the limits are `a=-1 ` and` b=2`
so ,
`V = pi * int _a ^b [R(x)^2 -r(x)^2] dx`
= `pi * int _-1 ^2 [(e^(x/2)+e^(-x/2))^2 -0^2] dx`
=`pi * int _-1 ^2 [(e^(x/2)+e^(-x/2))^2 ] dx`
=`pi * int _-1 ^2 [(e^(x/2)+e^(-x/2))^2 ] dx`
=`pi * int _-1 ^2 [e^x+e^(-x)+2 ] dx`
=`pi * [e^x -e^(-x)+2x]_-1 ^2 `
=`pi * [[e^2 -e^(-2)+4]-[e^(-1) -e^(1)+2(-1)]] `
=`pi*[[11.253]-[-4.350]]`
=`pi*[15.603] `
=`49.018`
is the volume
Comments
Post a Comment