`int_0^1 (x^3+2x)/(x^4+4x^2+3)dx`
To solve, apply u-substitution method.
Let
`u = x^4+4x^2+3`
Then, differentiate u.
`du=(4x^3 + 8x)dx`
`du=4(x^3+2x)dx`
`(du)/4=(x^3+2x)dx`
And, determine the values of u when x=0 and x=1.
`x=0`
`u=0^4+4(0)^2+3=3`
`x=1`
`u=1^4+4(1)^2+3=8`
So expressing the integral in terms of u it becomes:
`int_0^1(x^3+2x)/(x^4+4x^2+3)dx `
`= int_3^8 1/u * (du)/4 `
`= 1/4int_3^8 1/u du`
`= 1/4 ln u |_3^8`
`= 1/4 (ln 8 - ln 3)`
`=0.2452`
Therefore, `int_0^1 (x^3+2x)/(x^4+4x^2+3)dx = 0.2452` .
Comments
Post a Comment