`int(tan^(2)(x))/sec(x)dx`
Transform the numerator of the integral by using the following trigonometric identity:
`tan^2(x)=sec^2(x)-1`
`int(tan^2(x))/sec(x)dx=int(sec^2(x)-1)/sec(x)dx`
`=int((sec^2(x))/sec(x)-1/sec(x))dx`
`=int(sec(x)-cos(x))dx`
Apply the sum rule:
`=intsec(x)dx-intcos(x)dx`
use the following common integrals:
`intsec(x)dx=ln|sec(x)+tan(x)|+C`
and `intcos(x)dx=sin(x)+C`
`=ln|sec(x)+tan(x)|-sin(x)+C`
Comments
Post a Comment