`intx(3+2/x)^2dx`
Let's simplify the numerator of the integral ,
`x(3+2/x)^2=x{3^2+2(3)(2/x)+(2/x)^2}`
`=x{9+12/x+4/x^2}`
`=9x+12+4/x`
Now,`intx(3+2/x)^2dx=int(9x+12+4/x)dx`
Apply the sum rule and take the constant's out,
`=int9xdx+int12dx+int4/xdx`
`=9intxdx+12intdx+4int1/xdx`
Apply the power rule and use the common integral `int1/xdx=ln|x|`
`=9(x^(1+1)/(1+1))+12x+4ln|x|`
simplify and add a constant C to the solution,
`=(9x^2)/2+12x+4ln|x|+C`
Comments
Post a Comment