`int14(x-5)^6dx`
To solve, apply u-substitution method.
`u=x-5`
`du=dx`
Expressing the integral in terms of u, it becomes
`=int 14u^6 du`
`=14int u^6du`
To take the integral of this, apply the formula `int x^ndx=x^(n+1)/(n+1)+C` .
`=14*u^7/7 + C`
`=2u^7+C`
And substitute back u = x-5.
`=2(x-5)^7+C`
Therefore, `int 14(x-5)^6dx=2(x-5)^7+C` .
Comments
Post a Comment