`sum_(n=1)^oo (n!)/2^n`
To verify if the series diverges, apply the ratio test. The formula for the ratio test is:
`L = lim_(n->oo) |a_(n+1)/a_n|`
If L<1, the series converges.
If L>1, the series diverges.
And if L=1, the test is inconclusive.
Applying the formula above, the value of L will be:
`L = lim_(n->oo) |(((n+1)!)/2^(n+1))/ ((n!)/2^n)|`
`L= lim_(n->oo) |((n+1)!)/2^(n+1) * 2^n/(n!)|`
`L=lim_(n->oo) | ((n+1)*n!)/(2*2^n) * 2^n/(n!)|`
`L = lim_(n->oo) | (n+1)/2|`
`L = 1/2 lim_(n->oo) |n+ 1|`
`L=1/2 * oo`
`L=oo`
Therefore, the series diverges.
Comments
Post a Comment