To evaluate the equation `ln(x+19)=ln(7x-8)` , we apply natural logarithm property: `e^(ln(x))=x` .
Raise both sides by base of `e` .
`e^(ln(x+19))=e^(ln(7x-8))`
`x+19=7x-8`
Subtract `7x` from both sides of the equation.
`x+19-7x=7x-8-7x`
`-6x+19=-8`
Subtract 19 from both sides of the equation.
`-6x+19-19=-8-19`
`-6x=-27`
Divide both sides by `-6` .
`(-6x)/(-6)=(-27)/(-6)`
`x=9/2`
Checking: Plug-in `x=9/2` on `ln(x+19)=ln(7x-8)` .
`ln(9/2+19)=?ln(7*9/2-8)`
`ln(9/2+38/2)=?ln(63/2-16/2)`
`ln(47/2)=ln(47/2) ` TRUE
Thus, the `x=9/2` is the real exact solution of the equation `ln(x+19)=ln(7x-8)` . There is no extraneous solution.
Comments
Post a Comment