`int (e^(-3t))/(1+e^t)dt`
Rewrite the integrand:
`(e^(-3t))/(1+e^t)=(e^(-3t)+e^(-2t)-e^(-2t))/(1+e^t)=(e^(-3t)(e^t+1)-e^(-2t))/(e^t+1)`
`=e^(-3t)-(e^(-2t))/(e^t+1)=e^(-3t)+(-e^(-2t)+e^(-t)-e^(-t))/(e^t+1)=e^(-3t)+(-e^(-2t)(e^t+1)+e^(-t))/(e^t+1)`
`=e^(-3t)-e^(-2t)+(e^(-t))/(e^t+1)`
Looking just at the last term:
`(e^(-t))/(e^t+1)=(e^(-t)+1-1)/(e^t+1)=(e^(-t)(e^t+1)-1)/(e^t+1)=e^(-t)-1/(e^t+1)`
So:
`int (e^(-3t))/(1+e^t)dt=int (e^(-3t)-e^(-2t)+e^(-t)-1/(e^t+1))dt`
The last term in this integral can be rewritten:
`1/(e^t+1)*e^(-t)/e^(-t)=(e^(-t))/(1+e^(-t))`
Integrating term by term we get:
`int (e^(-3t))/(1+e^t)dt=-1/3e^(-3t)+1/2e^(-2t)-e^(-t)+ln(e^(-t)+1)+C`
Comments
Post a Comment