`lim_(x->0) (sin(3x))/(sin(5x))`
To solve, plug-in x=0.
`lim_(x->0) (sin(3x))/(sin(5x)) = (sin(3*0))/(sin(5*0)) = 0/0`
Since the result is indeterminate, to solve for the limit of the function as x approaches zero, apply the L'Hopital's Rule. So, take the derivative of the numerator and denominator.
`lim_(x->0) (sin(3x))/(sin(5x))= lim_(x->0) ((sin(3x))')/((sin(5x))')= lim_(x->0) (3cos(3x))/(5cos(5x))`
And, plug-in x = 0.
`= (3cos(3*0))/(5sin(5*0)) = (3*1)/(5*1)=3/5`
Therefore, `lim_(x->0) (sin(3x))/(sin(5x))=3/5` .
Comments
Post a Comment