Given to solve
`y' = sqrt(tan x) *(sec^4 x)`
=> `y = int sqrt(tan x) *(sec^4 x) dx`
so ,
we have to solve
`int sqrt(tan x) *(sec^4 x) dx`
= `int sqrt(tan x) *(sec^2 x) *(sec^2 x) dx`
= `int (1+tan^2 (x))*(sec^2 x)*(sqrt(tan x)) dx`
let ,
`u= tan x`
so, `du = sec^2 (x) dx`
so ,
`int (1+tan^2 (x))*(sec^2 x)*(sqrt(tan x)) dx`
=` int (1+u^2)(u^(1/2)) du`
= `int (u^(1/2)+u^(5/2)) du`
=` (u^((1/2) +1))/((1/2)+1) +(u^((5/2) +1))/((5/2)+1) `
= `(u^((3/2) ))/((3/2)) +(u^((7/2) ))/((7/2))`
= `2/3u^(3/2) +2/7u^(7/2)`
= `2/3(tan x)^(3/2 ) +2/7(tan x)^(7/2)`
Comments
Post a Comment