`a_n=(2n)/sqrt(n^2+1)`
To find the limit of a sequence, let n approach infinity.
`lim_(n->oo) a_n`
`=lim_(n->oo) (2n)/sqrt(n^2+1)`
`= lim_(n->oo) (2n)/sqrt(n^2(1+1/n^2))`
`=lim_(n->oo) (2n)/(nsqrt(1+1/n^2))`
`=lim_(n->oo) 2/sqrt(1+1/n^2)`
`=(lim_(n->oo)2)/(lim_(n->oo)sqrt(1+1/n^2))`
`=2/sqrt(1+0)`
`=2`
Therefore, the limit of the sequence is 2.
Comments
Post a Comment