`int e^x/((e^x-1)(e^x+4)) dx` Use substitution and partial fractions to find the indefinite integral
`inte^x/((e^x-1)(e^x+4))dx`
Let's apply integral substitution:`u=e^x`
`=>du=e^xdx`
`=int1/((u-1)(u+4))du`
Now create partial fraction template of the integrand,
`1/((u-1)(u+4))=A/(u-1)+B/(u+4)`
Multiply the above equation by the denominator,
`=>1=A(u+4)+B(u-1)`
`1=Au+4A+Bu-B`
`1=(A+B)u+4A-B`
Equating the coefficients of the like terms,
`A+B=0` ----------------(1)
`4A-B=1` ----------------(2)
From equation 1, `A=-B`
Substitute A in equation 2,
`4(-B)-B=1`
`-5B=1`
`B=-1/5`
`A=-B=-(-1/5)`
`A=1/5`
Plug in the values of A and B in the partial fraction template,
`1/((u-1)(u+4))=(1/5)/(u-1)+(-1/5)/(u+4)`
`=1/(5(u-1))-1/(5(u+4))`
`int1/((u-1)(u+4))du=int(1/(5(u-1))-1/(5(u+4)))du`
Apply the sum rule,
`=int1/(5(u-1))du-int1/(5(u+4))du`
Take the constant out,
`=1/5int1/(u-1)du-1/5int1/(u+4)du`
Now use the common integral:`int1/xdx=ln|x|`
`=1/5ln|u-1|-1/5ln|u+4|`
Substitute back `u=e^x` and add a constant C to the solution,
`=1/5ln|e^x-1|-1/5ln|e^x+4|+C`
Comments
Post a Comment