Given` xdx + (y+e^y)(x^2+1)dy = 0`
=>` x + (y+e^y)(x^2+1)dy/dx = 0`
=>` x/(x^2+1) + (y+e^y)dy/dx = 0`
=> `(y+e^y)dy/dx = -(x/(x^2+1))`
=>` (y+e^y)dy = -(x/(x^2+1))dx`
by integrating on both sides we get ,
`int (y+e^y)dy = int -(x/(x^2+1))dx`
=>` y^2/2 +e^y +c = - (1/2)ln(x^2+1)`
=> `y^2+2e^y = -ln(x^2+1)+C` where C is an arbitrary constant
Comments
Post a Comment