Integrate `int(x^2-x+6)/(x^3+3x)`
Rewrite the rational function using partial fractions.
`(x^2-x+6)/(x^3+3x)=(A/x)+(Bx+C)/(x^2+3)`
`x^2-x+6=A(x^2+3)+(Bx+C)x`
`x^2-x+6=Ax^2+3A+Bx^2+Cx`
`x^2-x+6=(A+B)x^2+Cx+3A`
Equate coefficients and solve for A, B, and C.
`3A=6`
`A=2`
`C=-1`
`A+B=1`
`2+B=1`
`B=-1`
`int(x^2-x+6)/(x^3+3x)dx=int(2/x)dx+int[(x-1)/(x^2+3)]dx`
`=int(2/x)dx+int[x/(x^2+3)]dx-int[1/(x^2+3)]dx`
The first integral matches the form `int (du)/u=ln|u|+C`
`int(2/x)dx=2int(1/x)dx=2ln|x|+C`
Integrate the second integral using u-substitution.
Let `u=x^2+3`
`(du)/(dx)=2x``
`dx=(du)/(2x)`
` ` `-intx/(x^2+3)dx`
`=-int(x/u)*(du)/(2x)`
`=-1/2ln|u|`
`=-1/2ln|x^2+3|`
The third integral matches the form
`int(dx)/(x^2+a^2)=(1/a)tan^-1(x/a)+C`
`-int1/(x^2+3)dx`
`=-1/sqrt3tan^-1(x/sqrt3)+C`
The final answer is:
`2ln|x|-1/2ln|x^2+3|-1/sqrt3tan^-1(x/sqrt3)+C`
Comments
Post a Comment