`sum_(n=1)^oo1/(n(n+2))`
We can write down the n'th term of the series as,
`a_n=1/(n(n+2))`
Using partial fractions,
`a_n=1/(2n)-1/(2(n+2))`
The n'th partial sum of the series is:
`S_n=(1/(2*1)-1/(2(1+2)))+(1/(2*2)-1/(2(2+2)))+(1/(2*3)-1/(2(3+2)))+.........+(1/(2(n-1))-1/(2(n-1+2)))+(1/(2n)-1/(2(n+2)))`
`S_n=(1/2-1/6)+(1/4-1/8)+(1/6-1/10)+..........+(1/(2(n-1))-1/(2(n+1)))+(1/(2n)-1/(2(n+2)))`
This is telescoping form of the series,
`S_n=(1/2+1/4-1/(2(n+1))-1/(2(n+2)))`
`sum_(n=1)^oo1/(n(n+2))=lim_(n->oo)S_n`
`=lim_(n->oo)(1/2+1/4-1/(2(n+1))-1/(2(n+2)))`
`=(1/2+1/4)`
`=3/4`
So the series converges.
Comments
Post a Comment