For the given integral problem: `int_(-pi/2)^(pi/2) cos(x)/(1+sin^2(x)) dx` , we can evaluate this applying indefinite integral formula: `int f(x) dx = F(x) +C`
where:
`f(x)` as the integrand function
`F(x)` as the antiderivative of `f(x)`
`C` as the constant of integration.
From the basic indefinite integration table, the problem resembles one of the formula for integral of rational function:
`int (du)/(1+u^2)= arctan (u) +C` .
For easier comparison, we may apply u-substitution by letting: `u = sin(x)` then `du =cos(x) dx` . Since `x=+-pi/2` then `u=+-1`
`int_(-pi/2)^(pi/2) cos(x)/(1+sin^2(x)) dx
`=int_-1^1 (du)/(1+u^2)`
`= arctan(u) |_-1^1 `
`=arctan(1)-arctan(-1)`
`=pi/4- (-pi/4)`
`=pi/4+pi/4`
` =(2pi)/4`
`= pi/2`
Comments
Post a Comment