Recall that indefinite integral follows `int f(x) dx = F(x) +C` where:
`f(x)` as the integrand function
`F(x)` as the antiderivative of ` f(x)`
`C` as the constant of integration.
For the given integral problem: `int x^3 sin(x) dx` , we may apply integration by parts: `int u *dv = uv - int v *du` .
Let:
`u = x^3` then `du =3x^2 dx`
`dv= sin(x) dx` then `v = -cos(x)`
Note: From the table of integrals, we have `int sin(u) du = -cos(u) +C` .
Applying the formula for integration by parts, we have:
`int x^3 sin(x) dx= x^3*(-cos(x)) - int ( -cos(x))* 3x^2dx`
`= -x^3cos(x)- (-3) int x^2*cos(x) dx`
`=-x^3cos(x)+3 int x^2 *cos(x) dx`
Apply another set of integration by parts on `int x^2 *cos(x) dx` .
Let:
`u = x^2` then `du =2x dx`
`dv= cos(x) dx` then `v =sin(x)`
Note: From the table of integrals, we have `int cos(u) du = sin(u) +C` .
Applying the formula for integration by parts, we have:
`int x^2 cos(x) dx= x^2*(sin(x)) - int sin(x) * (2x) dx`
` = x^2sin(x)- 2 int x*sin(x) dx`
`= x^2sin(x)-2 int x *sin(x) dx`
Apply another set of integration by parts on `int x *sin(x) dx` .
Let: `u =x` then `du =dx`
`dv =sin(x) dx` then `v =-cos(x)`
Note: From the table of integrals, we have `int sin(u) du =-cos(u) +C` .
`int x *sin(x) dx = x*(-cos(x)) -int (-cos(x)) dx`
`= -xcos(x) + int cos(x) dx`
`= -xcos(x) + sin(x)`
Applying `int x *sin(x) dx =-xcos(x) + sin(x)` , we get:
`int x^2 cos(x) dx=x^2sin(x)-2 int x *sin(x) dx`
`= x^2sin(x)-2 [-xcos(x) + sin(x)]`
`=x^2sin(x)+2xcos(x) -2sin(x)` .
Applying `int x^2 cos(x) dx=x^2sin(x)+2xcos(x) -2sin(x)` , we get the complete indefinite integral:
`int x^3 sin(x) dx=-x^3cos(x)+3 int x^2 *cos(x) dx`
`=-x^3cos(x)+3[x^2sin(x)+2xcos(x) -2sin(x)] +C`
`=-x^3cos(x)+ 3x^2sin(x) +6xcos(x) - 6sin(x) +C`
Comments
Post a Comment