Given to solve,
`lim_(x->oo) (x^2 +4x+7)/(x-6)`
as `x->oo` then the ` (x^2 +4x+7)/(x-6) =oo/oo` is of indeterminate form
so upon applying the L 'Hopital rule we get the solution as follows,
If `lim_(x->a) f(x)/g(x) is = 0/0` or `(+-oo)/(+-oo)` then by using the L'Hopital Rule we get the solution with the below form.
`lim_(x->a) (f'(x))/(g'(x))`
so , now evaluating
`lim_(x->oo) (x^2 +4x+7)/(x-6)`
= `lim_(x->oo) ((x^2 +4x+7)')/((x-6)')`
= `lim_(x->oo) (2x+4)/(1)`
by plugging the value `x=oo` , we get
=` 2(oo)+4`
= `oo`
Comments
Post a Comment