`sum_(n=1)^oo (-1)^nx^n/n` Find the interval of convergence of the power series. (Be sure to include a check for convergence at the endpoints...
To determine the interval of convergence for the given series: `sum_(n=1)^oo(-1)^nx^n/n` , we may apply Root Test. In Root test , we determine the limit as: `lim_(n-gtoo) root(n)(|a_n|)=L` or `lim_(n-gtoo) |a_n|^(1/n)=L` The series is absolutely convergent if it satisfies the Root test condition: L` lt1.` For the given series: `sum_(n=1)^oo(-1)^nx^n/n` , we have: `a_n= (-1)^nx^n/n` Then, set-up the limit as: `lim_(n-gtoo) |(-1)^nx^n/n|^(1/n) =lim_(n-gtoo) |x^n/n|^(1/n)` Note: `|(-1)^n|=1` and `1*|x^n| =|x^n|` . Apply Law of exponents: `(x/y)^n =x^n/y^n` and `(x^n)^m= x^(n*m).` `lim_(n-gtoo) |x^n/n|^(1/n)=lim_(n-gtoo) |(x^n)^(1/n)/n^(1/n)|` `=lim_(n-gtoo) |x^(n*1/n)/n^(1/n)|` `=lim_(n-gtoo) |x^(n/n)/n^(1/n)|` `=lim_(n-gtoo) |x^1/n^(1/n)|` `=lim_(n-gtoo) |x/n^(1/n)|` Evaluate the limit. `lim_(n-gtoo) |x/n^(1/n)| =( lim_(n-gtoo) |x|)/( lim_(n-gtoo) |n^(1/n)|)` `= |x...