Integrate `int(x+4)/(x^2+2x+5)dx`
`int(x+4)/(x^2+2x+5)dx=int(x+1)/(x^2+2x+5)dx+int3/(x^2+2x+5)dx`
Integrate the first integral on the left side of the equation using the u-substitution method.
Let `u=x^2+2x+5`
`(du)/(dx)=2x+2`
`dx=(du)/(2(x+1))`
`int(x+1)/(x^2+2x+5)dx`
`=int(x+1)/u*(du)/(2(x+1))`
`=1/2ln|u|+C`
`1/2ln|x^2+2x+5|+C`
The second integral on the left side will match the form
`intdx/(x^2+a^2)=1/atan^-1(x/a)+C` after you complete the square in the denominator.
`int3/(x^2+2x+5)dx`
`=3intdx/[(x^2+2x+1)+5-1]`
`=3intdx/[(x+1)^2+2^2]`
`=3(1/2)tan^-1((x+1)/2)+C`
`=(3/2)tan^-1[(x+1)/2]+C`
The final answer is:
`1/2ln|x^2+2x+5|+(3/2)tan^-1[(x+1)/2]+C`
Comments
Post a Comment