`(1/(2x-5)-7/(8x-20))/(x/(2x-5))`
`=(1/(2x-5)-7/(4(2x-5)))/(x/(2x-5))`
LCD of all the denominators in the complex fraction is `(2x-5)`
Multiply both the numerator and denominator of the complex fraction by LCD, and use the distributive property,
`=((2x-5)(1/(2x-5))-(2x-5)(7/(4(2x-5))))/((2x-5)(x/(2x-5)))`
Simplify,
`=(1-7/4)/x`
`=((4-7)/4)/x`
`=(-3/4)/x`
`=-3/(4x)`
Comments
Post a Comment