`sum_(n=1)^oo1/((2n+1)(2n+3))`
Using partial fractions, we can write the n'th term of the sequence as,
`a_n=1/(2(2n+1))-1/(2(2n+3))`
Now the n'th partial sum is,
`S_n=(1/(2(2+1))-1/(2(2+3)))+(1/(2(2*2+1))-1/(2(2*2+3)))+(1/(2(2*3+1))-1/(2(2*3+3)))+.............+(1/(2(2n+1))-1/(2(2n+3)))`
`S_n=(1/6-1/10)+(1/10-1/14)+(1/14-1/18)+........+(1/(2(2n+1))-1/(2(2n+3)))`
`S_n=(1/6-1/(2(2n+3)))`
`sum_(n=1)^oo1/((2n+1)(2n+3))=lim_(n->oo)S_n`
`=lim_(n->oo)(1/6-1/(2(2n+3)))`
`=1/6`
Comments
Post a Comment