Given to solve,
`int sin^3 (2 theta) sqrt(cos(2 theta)) d(theta)`
let `x= theta` (just for convinence)
so,
`int sin^3 (2 theta) sqrt(cos(2 theta)) d(theta)`
=`int sin^3 (2x) sqrt(cos(2x)) dx`
let `2x= u` so , `du = 2dx` then ,
`int sin^3 (2x) sqrt(cos(2x)) dx`
=`int sin^3 (u) sqrt(cos(u)) (du)/2`
=`(1/2)int sin^2 (u) sin u sqrt(cos(u)) du`
= `(1/2)int (1-cos^2 (u)) sin u sqrt(cos(u)) du`
let `cos u =t, so , dt = -sin(u) du`
then,
`(1/2)int (1-cos^2 (u)) sin u sqrt(cos(u)) du`
= `(1/2)int (1-t^2) sqrt(t) sin u du`
=`(1/2)int (1-t^2) sqrt(t) (-dt)`
= `(-1/2)int (1-t^2) sqrt(t) (dt)`
= `(-1/2) int (t^(1/2) - t^(5/2))dt`
= `(-1/2) [(t^(3/2))/(3/2) - t^((5/2)+1)/((5/2)+1)]`
= `(-1/2) [(t^(3/2))/(3/2) - (t^(7/2))/(7/2)]`
but `t= cos u = cos(2x)` so,
= `(-1/2) [((cos(2x))^(3/2))/(3/2) - ((cos(2x))^(7/2))/(7/2)]`
= `(1/2)[((cos(2x))^(7/2))/(7/2) -((cos(2x))^(3/2))/(3/2)]`
but `x= theta,` so
= `(1/2)[((cos(2(theta)))^(7/2))/(7/2) -((cos(2(theta)))^(3/2))/(3/2)]`
so,
`int sin^3 (2 theta) sqrt(cos(2 theta)) d(theta)`
=`(1/2)[((cos(2(theta)))^(7/2))/(7/2) -((cos(2(theta)))^(3/2))/(3/2)]`
Comments
Post a Comment