`sum_(n=0)^oo (-1)^n(x^n)/(n+1)`
To find the radius of convergence of a series `sum` `a_n` , apply the Ratio Test.
`L = lim_(n->oo) |a_(n+1)/a_n|`
`L=lim_(n->oo) |((-1)^(n+1) x^(n+1)/((n+1)+1))/((-1)^n(x^n)/(n+1))|`
`L=lim_(n->oo) | (-1) * (x^(n+1)/(n+2))/(x^n/(n+1))|`
`L=lim_(n->oo) | (x^(n+1)/(n+2))/(x^n/(n+1))|`
`L= lim_(n->oo) |x^(n+1)/(n+2) * (n+1)/x^n|`
`L=lim_(n->oo) |(x(n+1))/(n+2)|`
`L = |x| lim_(n->oo) |(n+1)/(n+2)|`
`L=|x| * 1`
`L=|x|`
Take note that in Ratio Test, the series converges when L <1.
`Llt1`
`|x|lt1`
By Ratio Test, the series converges when |x|<1.
Therefore, the radius of convergence of the given series is `R=1` .
Comments
Post a Comment