Given to solve,
`lim_(x->oo) e^x/(x^4)`
as `x->oo` then the ` e^x/(x^4) =oo/oo` form
so upon applying the L 'Hopital rule we get the solution as follows,
as for the general equation it is as follows
`lim_(x->a) f(x)/g(x) is = 0/0` or `(+-oo)/(+-oo)` then by using the L'Hopital Rule we get the solution with the below form.
`lim_(x->a) (f'(x))/(g'(x))`
so , now evaluating
`lim_(x->oo) (e^x)/(x^4)`
= `lim_(x->oo) ((e^x)')/((x^4)')`
= `lim_(x->oo) ((e^x))/((4x^3))`
again `((e^x))/((4x^3))` is of the form `oo/oo` so , we can apply again L'Hopital Rule .
=`lim_(x->oo) ((e^x)')/((4x^3)')`
=`lim_(x->oo) ((e^x))/(((4*3)x^2))`
=`lim_(x->oo) ((e^x))/((12x^2))`
again `((e^x))/((12x^2))` is of the form `oo/oo ` so , we can apply again L'Hopital Rule .
=`lim_(x->oo) ((e^x)')/((12x^2)')`
=`lim_(x->oo) ((e^x))/(((12*2)x))`
= `lim_(x->oo) ((e^x))/(((24)x))`
again `((e^x))/(((24)x))` is of the form `oo/oo` so , we can apply again L'Hopital Rule .
= `lim_(x->oo) ((e^x)')/(((24)x)')`
=`lim_(x->oo) ((e^x))/(24)`
on plugging the value`x= oo` , we get
=`((e^(oo)))/(24)`
=`oo`
Comments
Post a Comment