To evaluate the given equation `4^(2x-5)=64^(3x)` , we may let `64 =4^3` .
The equation becomes: `4^(2x-5)=(4^3)^(3x)` .
Apply Law of exponents: `(x^n)^m = x^(n*m)` .
`4^(2x-5)=4^(3*3x)`
`4^(2x-5)=4^(9x)`
Apply the theorem: If `b^x=b^y` then `x=y` .
If `4^(2x-5)=4^(9x` ) then `2x-5=9x` .
Subtract 2x on both sides of the equation `2x-5=9x` .
`2x-5-2x=9x-2x`
`-5=7x`
Divide both sides by `7` .
`(-5)/7=(7x)/7`
`x = -5/7`
Checking: Plug-in `x=-5/7` on `4^(2x-5)=64^(3x).`
`4^(2(-5/7)-5)=?64^(3*(-5/7))`
`4^((-10)/7-5)=?64^((-15)/7)`
`4^((-45)/7)=?64^((-15)/7)`
`4^((-45)/7)=?(4^3)^((-15)/7)`
`4^((-45)/7)=?4^(3*(-15)/7)`
`4^((-45)/7)=4^((-45)/7)` TRUE
or
`0.000135~~0.000135` TRUE
Thus, the `x=-5/7` is the real exact solution of the equation `4^(2x-5)=64^(3x)` .
Comments
Post a Comment