Skip to main content

When do gases and liquids contract, and why do they contract?

The Kinetic Theory of Matter states that an object is made up of tiny particles - atoms or molecules - that are in constant motion. A book is well-defined - it has a certain volume and a certain mass. The book is made up of molecules of various chemicals making up the paper and the ink. While the book is not vibrating - not moving at all, in fact - the molecules inside it are in constant motion - they are vibrating in place. The same is true for a liquid. Water sitting in a glass might not appear to be moving, but the molecules in it are actually moving around and vibrating - to a much greater extent than solids. Molecules in gases are in an even greater constant motion. They have higher kinetic energies, and can actually take up any available space. Molecules/atoms in gases interact negligibly making this possible, as opposed to the free-moving molecules in liquids that are still interacting and hence giving it a defined volume. In solids, the molecules are very tightly packed that only the vibrations are possible.


However, even in solids, increasing the temperature will cause a bit of an expansion. This is the reason why there are tiny gaps in rail roads, for instance. It allows for the thermal expansion of the material. This happens because as temperature rises, the kinetic energy in the molecules also increases, and they vibrate more rapidly - this results in a displacement due to vibration that's higher than lower temperatures. The same happens for gases and liquids.


The reverse of this is also true. As temperature decreases, kinetic energy decreases. This would result to less movement. In solids, while there is still compression, it is not very noticeable as the molecules/atoms are already tightly packed. However, in liquids and gases, this is very significant. Lower temperature means lower kinetic energy and hence less vibration and the molecules can interact more. This results to contraction in liquids and gases. This is more dramatic in gases. According to the kinetic molecular theory of gases, the particles in a gas do not interact at all. This is because of high kinetic energy. However, by reducing that, this gives the particles a chance to interact with each other, thus further slowing them down, and you get contraction in lower temperatures - very much dramatic when you put a balloon in a freezer. This is also when it may start to condense.


Hence, in brief, liquids and gases contract or get compressed at lower temperatures. This is because of the lowering of the kinetic energy that lessens the vibrations and motions in the particles.


(Note: In some cases, like water, compression of a liquid stops at a certain point. When it freezes, ice is less dense than water. This is because of the structure of the water in the ice crystal).

Comments

Popular posts from this blog

Is there a word/phrase for "unperformant"?

As a software engineer, I need to sometimes describe a piece of code as something that lacks performance or was not written with performance in mind. Example: This kind of coding style leads to unmaintainable and unperformant code. Based on my Google searches, this isn't a real word. What is the correct way to describe this? EDIT My usage of "performance" here is in regard to speed and efficiency. For example, the better the performance of code the faster the application runs. My question and example target the negative definition, which is in reference to preventing inefficient coding practices. Answer This kind of coding style leads to unmaintainable and unperformant code. In my opinion, reads more easily as: This coding style leads to unmaintainable and poorly performing code. The key to well-written documentation and reports lies in ease of understanding. Adding poorly understood words such as performant decreases that ease. In addressing the use of such a poorly ...

A man has a garden measuring 84 meters by 56 meters. He divides it into the minimum number of square plots. What is the length of the square plots?

We wish to divide this man's garden into the minimum number of square plots possible. A square has all four sides with the same length.Our garden is a rectangle, so the answer is clearly not 1 square plot. If we choose the wrong length for our squares, we may end up with missing holes or we may not be able to fit our squares inside the garden. So we have 84 meters in one direction and 56 meters in the other direction. When we start dividing the garden in square plots, we are "filling" those lengths in their respective directions. At each direction, there must be an integer number of squares (otherwise, we get holes or we leave the garden), so that all the square plots fill up the garden nicely. Thus, our job here is to find the greatest common divisor of 84 and 56. For this, we prime factor both of them: `56 = 2*2*2*7` `84 = 2*2*3*7` We can see that the prime factors and multiplicities in common are `2*2*7 = 28` . This is the desired length of the square plots. If you wi...

What warning does Chuchundra issue to Rikki?

Chuchundra, the sniveling, fearful muskrat who creeps around walls because he is too terrified to go into the center of a room, meets Rikki in the middle of the night. He insults Rikki by begging him not to kill him. He then insults him by suggesting that Nag might mistake Chuchundra for Rikki. He says, "Those who kill snakes get killed by snakes."  He issues this warning to Rikki not to help keep Rikki safe but as a way of explaining why Rikki's presence gives him, Chuchundra, more reason to fear.  Chuchundra starts to tell Rikki what Chua the rat told him--but breaks it off when he realizes he might be overheard by Nag. He says, "Nag is everywhere, Rikki-Tikki." Rikki threatens to bite Chuchundra to get him to talk. Even then, Chuchundra won't overtly reveal any information. But he does say, "Can't you hear, Rikki-Tikki?" This is enough of a clue for the clever mongoose. He listens carefully and can just make out the "faintest scratch-s...