Evaluate ` sum_(n=1)^(oo)(1-3/n)^n ` :
We are asked to use the ratio test to test for convergence. If the limit of the ratio of the (n+1)st term to the nth term is less than 1 in absolute value, the series converges. If greater than 1, the series diverges. (If the limit equals 1, we cannot draw any conclusion.)
`lim_(n->oo)(1-3/(n+1))^(n+1)/(1-3/n)^n `
`=lim_(n->oo)((n+1)ln(1-3/(n+1)))/(nln(1-3/n)) ` Using L'Hopital's rule for the indeterminant form
`=lim_(n->oo)(n+1)/n * lim_(n->oo) ((3/(n+1)^2)/(1-3/(n+1)))/((3/n^2 /(1-3/n)) )`
`=lim_(n->oo)(3/(n+1)^2)/(1-3/(n+1))*(1-3/n)/(3/n^2) `
`=lim_(n->oo)(3/(n+1))/(n-2)*(n^2-3n)/3 `
`=lim_(n->oo)(n(n-3))/((n+1)(n-2)) `
`=lim_(n->oo)(1-3/n)/(1-1/n-2/n^2)=1 `
Thus the ratio test is indeterminate.
(Using the limit test we can show that the series diverges.)
Comments
Post a Comment