`int 2x^3cos(x^2) dx` Find the indefinite integral by using substitution followed by integration by parts.
Recall that indefinite integral follows `int f(x) dx = F(x) +C` where:
`f(x)` as the integrand function
`F(x) ` as the antiderivative of `f(x)`
`C` as the constant of integration.
For the given integral problem: `int 2x^3 cos(x^2) dx` , we may apply apply u-substitution by letting: `u = x^2` then `du =2x dx` .
Note that `x^3 =x^2 *x ` then `2x^3 dx = 2*x^2 *x dx` or `x^2 * 2x dx`
The integral becomes:
`int 2x^3 cos(x^2) dx =int x^2 *cos(x^2) *2x dx`
`= int u cos(u) du`
Apply formula of integration by parts: `int f*g'=f*g - int g*f'` .
Let: `f =u` then `f' =du`
`g' =cos(u) du` then `g=sin(u)`
Note: From the table of integrals, we have `int cos(x) dx =sin(x) +C` .
`int u *cos(u) du = u*sin(u) -int sin(u) du`
`= usin(u) -(-cos(u)) +C`
`= usin(u) + cos(u)+C`
Plug-in `u = x^2` on `usin(u) + cos(u)+C` , we get the complete indefinite integral as:
`int 2x^3 cos(x^2) dx =x^2sin(x^2) +cos(x^2) +C`
Comments
Post a Comment