Given to solve,
`int (tan^2 x )/(sec^5 x) dx`
=`int (sin^2 x )(cos^3 x )dx`
= `int sin^2 x * cos^2 x * cosx dx`
= `int sin^2 x * (1-sin^2(x) )*cosx dx`
let `u=sinx => du =cosx dx`
so ,
`int sin^2 x * (1-sin^2(x) )*cosx dx`
=`int u^2 * (1-u^2) du`
= `int u^2 -u^4 du`
= `(u^3)/3 - (u^5)/5 +c`
= `(sin^3 (x))/3 -(sin^5 (x))/5 +c`
Comments
Post a Comment