Recall that the Divergence test follows the condition:
If `lim_(n-gtoo)a_n!=0` then `sum a_n` diverges.
For the given series `sum_(n=1)^oo n/sqrt(n^2+1)` , we have `a_n=n/sqrt(n^2+1)`
To evaluate the `a_n=n/sqrt(n^2+1)` , we divide by `n ` with the highest exponent which is `n` or `sqrt(n^2)` . Note: `n = sqrt(n^2)` .
`a_n=(n/n)/(sqrt(n^2+1)/sqrt(n^2))`
`= 1 /sqrt((n^2+1)/n^2)`
`= 1/sqrt(n^2/n^2+1/n^2)`
`=1/sqrt(1+1/n^2)`
Applying the divergence test, we determine the limit of the series as:
`lim_(n-gtoo)a_n =lim_(n-gtoo)n/sqrt(n^2+1)`
` = lim_(n-gtoo)1/sqrt(1+1/n^2)`
` =[lim_(n-gtoo)1] /[lim_(n-gtoo)sqrt(1+1/n^2)]`
` = 1 / sqrt(1+ 1/oo)`
` =1 / sqrt(1+0)`
` =1 / sqrt(1)`
` = 1/1`
` =1`
The `lim_(n-gtoo)n/sqrt(n^2+1)=1` satisfy the condition `lim_(n-gtoo)a_n!=0`.
Therefore, the series `sum_(n=1)^oon/sqrt(n^2+1) ` is a divergent series.
We can also verify with the graph of `f(n) =n/sqrt(n^2+1)` :
As the "n" value increases, the graph diverges.
Comments
Post a Comment