For the given equation `2^(0.1x)-5=12` , we may simplify by combining like terms.
Add `5` on both sides of the equation.
`2^(0.1x)-5+5=12+5`
`2^(0.1x)=17`
Take the "`ln` " on both sides to be able to bring down the exponent value.
Apply the natural logarithm property: `ln(x^n)= n*ln(x)` .
`ln(2^(0.1x))=ln(17)`
`0.1xln(2)=ln(17)`
`(xln(2))/10=ln(17)`
Multiply both sides by `10` .
`(xln(2))/10*10=ln(17)*10`
`xln(2)=10ln(17)`
To isolate `x` , divide both sides by `ln(2)` .
`(xln(2))/(ln(2))=(10ln(17))/(ln(2))`
`x=(10ln(17))/(ln(2)) or40.87 ` (approximated value)
Checking: Plug-in `x=40.87` on `2^(0.1x)-5=12` .
`2^(0.1*40.87)-5=?12`
`2^(4.087)-5=?12`
`17-5=?12`
`12=12 ` TRUE
Note: `2^(4.087)=16.99454698~~17`.
Therefore, there is no extraneous solution.
The `x=(10ln(17))/(ln(2))` is the real exact solution of the given equation `2^(0.1x)-5=12` .
Comments
Post a Comment