`int t^3 sqrt(t^4 +1) dt`
To solve, apply u-substitution method.
`u=t^4 + 1`
`du = 4t^3dt`
`(du)/4=t^3dt`
Expressing the integral in terms of u, it becomes:
`= int sqrt(t^4+1)*t^3dt`
`= int sqrtu * (du)/4`
`=1/4int sqrtu du`
Then, express the radical in exponent form.
`= 1/4 int u^(1/2)du`
To take the integral of this, apply the formula `int x^ndx = x^(n+1)/(n+1)+C`.
`=1/4*u^(3/2)/(3/2) + C`
`=1/4*u^(3/2)*2/3+C`
`=1/6u^(3/2)+C`
And, substitute back `u = t^4+1` .
`=1/6(t^4+1)^(3/2) + C`
Therefore, `int t^3sqrt(t^4+1)dt=1/6(t^4+1)^(3/2) + C` .
Comments
Post a Comment