`sum_(n=1)^oo(2^n+1)/2^(n+1)`
Let's verify it by using n'th term rest for divergence:
If `lim_(n->oo)a_n!=0` ,then `sum_(n=1)^ooa_n` diverges
`lim_(n->oo)(2^n+1)/2^(n+1)`
`=lim_(n->oo)(2^n+1)/(2^n*2^1)`
`=lim_(n->oo)(2^n(1+1/2^n))/(2^n*2)`
`=lim_(n->oo)(1+1/2^n)/2`
`=1/2!=0`
Since `lim_(n->oo)a_n!=0` , we can conclude that the series diverges as per the divergence test.
Comments
Post a Comment