`x/(x^2-2)=(-1)/x`
Cross multiply,
`x*x=-1(x^2-2)`
`x^2=-x^2+2`
`x^2+x^2-2=0`
`2x^2-2=0`
Factorize,
`2(x^2-1)=0`
`2(x+1)(x-1)=0`
Use the zero product property,
`x+1=0` or `x-1=0`
`x=-1` or `x=1`
Now let's check the solutions by plugging them in the original equation,
For x=-1,
`(-1)/((-1)^2-2)=(-1)/(-1)`
`(-1)/(1-2)=1`
`(-1)/(-1)=1`
`1=1`
It's true.
For x=1,
`1/(1^2-2)=(-1)/1`
`1/(1-2)=-1`
`1/(-1)=-1`
`-1=-1`
It's true.
S, the solutions are -1 and 1.
Comments
Post a Comment