To find the positive values of p in which the series `sum_(n=3)^oo 1/(nln(n)(ln(ln(n)))^p)` , we may apply the integral test.
Integral test is applicable if f is positive, continuous, and decreasing function and `a_n=f(x)` . The infinite series `sum_(n=k)^oo a_n` converges if and only of the improper integral `int _k^oo f(x)dx ` converges to a finite number. If the integral diverges then the series also diverges.
For the infinite series `sum_(n=3)^oo 1/(nln(n)(ln(ln(x)))^p)` , we have:
`a_n=1/(nln(n)(ln(ln(n)))^p)`
Then, `f(x) =1/(xln(x)(ln(ln(x)))^p)`
The `f(x)` satisfies the conditions for integral test for the interval `[3,oo)`
We set-up the improper integral as:
`int_3^oo1/(xln(x)(ln(ln(x)))^p) dx.`
Apply u-substitution by letting `u = ln(x)` then `du =1/xdx` .
`int 1/(xln(x)(ln(ln(x)))^p) dx=int 1/(ln(x)(ln(ln(x)))^p)* 1/xdx`
`=int 1/(u(ln(u))^p) du`
Apply another set of substitution: let` v =ln(u)` and `dv = 1/u du` .
`int 1/(u(ln(u))^p) du=int 1/(ln(u))^p* 1/u du`
`=int 1/v^p* dv`
` =int v^(-p) dv`
`= v^(-p+1)/(-p+1)`
Recall `u =ln(x) ` and `v = ln(u)` then `v =ln(ln(x))` .
`v^(-p+1)/(-p+1)=(ln(ln(x)))^(-p+1)/(-p+1)|3^oo`
The integral is finite when `-p+1lt0` or `pgt1` .
Note: When` (ln(ln(x)))` has positive power on the numerator side then the integral diverges.
When` (ln(ln(x)))` has negative power on the numerator side then the integral converges.
Thus, the series `sum_(n=3)^oo 1/(nln(n)(ln(ln(n)))^p)` converges when `pgt1` .
Comments
Post a Comment