`int (1/(2x+5)-1/(2x-5))dx`
To solve, express it as difference of two integrals.
`= int 1/(2x+5)dx - int 1/(2x-5)dx`
Then, apply substitution method.
`du=2dx`
`1/2du=dx`
`dw=2dx`
`1/2dw=dx`
Expressing the two integrals in terms of u and w, it becomes
`= int 1/u*1/2 du - int 1/w*1/2dw`
`=1/2int1/u du- 1/2 int1/w dw`
To take the integral of these, apply the formula `int 1/x dx = ln|x|+C` .
`= 1/2 ln|u| - 1/2 ln|w|+C`
And, substitute back `u= 2x+5` and `w=2x-5`.
`=1/2ln|2x+5|-1/2ln|2x-5|+C`
Therefore, `int (1/(2x+5)-1/(2x-5))dx=1/2ln|2x+5|-1/2ln|2x-5|+C` .
Comments
Post a Comment