`int 7/(z-10)^7 dz`
To solve, apply u-substitution method.
`u=z-10`
`du=dz`
Expressing the integral in terms of u, it becomes
`= int 7/u^7 du`
Then, apply the negative exponent rule `a^(-m)=1/a^m` .
`= int 7u^(-7)du`
`=7int u^(-7)du`
To take the integral of this, apply the formula `int x^ndx=x^(n+1)/(n+1)+C` .
`= 7 *u^(-6)/(-6) +C`
`=-7/(6u^6)+C`
And substitute back `u=z-10`
`=-7/(6(z-10)^6) +C`
Therefore, `int 7/(z-10)^7 dz==-7/(6(z-10)^6) +C` .
Comments
Post a Comment