Given to solve ,
`lim_(x->oo) e^(x/2)/x`
As `x` thends to ` oo` we get `e^(x/2)/x = oo/oo`
L'Hopital's Rule says if
`lim_(x->a) f(x)/g(x) = 0/0` or `(+-oo)/(+-oo)` then the limit is: `lim_(x->a) f'(x)/g'(x)`
so , now evaluating
`lim_(x->oo) e^(x/2)/x`
upon using the L'Hopital's Rule we get
=`lim_(x->oo) ((e^(x/2))')/((x)')`
=`lim_(x->oo) ((e^(x/2))(1/2))/(1)`
=>`lim_(x->oo) (e^(x/2))/2`
now on` x-> oo` we get `e^(x/2) -> oo`
so,
`lim_(x->oo) (e^(x/2))/2 = oo`
Comments
Post a Comment