`inttan^3(pix/2)sec^2(pix/2)dx`
apply integral substitution: `u=(pix)/2`
`=>du=(pi/2)dx`
`=>dx=(2/pi)du`
`inttan^3(pix/2)sec^2(pix/2)dx=inttan^3(u)sec^2(u)(2/pi)du`
Take the constant out,
`=(2/pi)inttan^3(u)sec^2(u)du`
Again apply integral substitution: `v=tan(u)`
`=>dv=sec^2(u)du`
`=2/piintv^3du`
Apply the power rule,
`=2/pi(v^(3+1)/(3+1))`
`=2/pi((v^4)/4)`
Substitute back `v=tan(u)` and `u=(pix)/2`
`=1/(2pi)tan^4((pix)/2)`
Add a constant C to the solution,
`=1/(2pi)tan^4((pix)/2)+C`
Comments
Post a Comment