Integrate `int(x^2+2x-1)/(x^3-x)dx`
Rewrite the rational function using partial fractions.
`(x^2+2x-1)/(x^3-x)=A/x+B/(x+1)+C/(x-1)`
`x^2+2x-1=A(x^2-1)+Bx(x-1)+Cx(x+1)`
`x^2+2x-1=Ax^2-A+Bx^2-Bx+Cx^2+Cx`
`x^2+2x-1=(A+B+C)x^2+(C-B)x-A`
Equate coefficients and solve for A, B, and, C.
`-A=-1`
`A=1`
` ` `A+B+C=1`
`1+B+C=1`
`B+C=0`
`C-B=2`
`C+B=0`
`2C=2`
`C=1`
`B+C=0`
`B+1=0`
`B=-1`
`int(x^2+2x-1)/(x^3-x)dx=int(1/x)dx-int1/(x+1)dx+1/(x-1)dx`
`=ln|x|-ln|x+1|+ln|x-1|+C`
`=ln|[x(x-1)]/(x+1)|+C`
The final answer is:
`=ln|[x(x-1)]/(x+1)|+C `
Comments
Post a Comment