`h(x)=1/(1-5x) ,c=0` Find a power series for the function, centered at c and determine the interval of convergence.
A power series centered at `c=0` is follows the formula:
`sum_(n=0)^oo a_nx^n = a_0+a_1x+a_2x^2+a_3x^3+...`
The given function` h(x)= 1/(1-5x)` resembles the power series centered at `c=0` :
`(1+x)^k = sum_(n=0)^oo (k(k-1)(k-2)...(k-n+1))/(n!) x ^n`
or
`(1+x)^k = 1+kx +(k(k-1))/(2!)x^2+(k(k-1)(k-2))/(3!)x^3+(k(k-1)(k-2)(k-3))/(4!)x^4+...`
To evaluate the given function `h(x) =1/(1-5x)` centered at `c=0` , we may apply Law of exponents: `1/x^n = x^(-n)` .
`h(x)= (1-5x) ^(-1)`
Apply the aforementioned formula for power series on `(1-5x) ^(-1) or (1+(-5x))^(-1)` , we may replace "`x` " with "`-5x` " and "`k` " with "`-1` ". We let:
`(1+(-5x))^(-1) = sum_(n=0)^oo (-1(-1-1)(-1-2)...(-1-n+1))/(n!) (-5x) ^n `
`=sum_(n=0)^oo (-1(-2)(-3)...(-1-n+1))/(n!)(-5)^nx ^n`
`=1+(-1)(-5)^1x +(-1(-2))/(2!)(-5)^2x ^2+(-1(-2)(-3))/(3!)(-5)^3x ^3+(-1(-2)(-3)(-4))/(4!)(-5)^4x ^4+...`
`=1+5x +2/2*25*x ^2+(-6)/6(-125)x ^3+24/24*625*x ^4+...`
`=1+5x +25x ^2+125x ^3+625x ^4+...`
`= sum_(n=0)^oo (5x)^n`
To determine the interval of convergence, we may apply geometric series test wherein the series `sum_(n=0)^oo a*r^n` is convergent if `|r|lt1 ` or `-1 ltrlt 1` . If `|r|gt=1` then the geometric series diverges.
By comparing `sum_(n=0)^oo (5x)^n` with `sum_(n=0)^oo a*r^n` , we determine: `r = 5x` .
Apply the condition for convergence of geometric series: `|r|lt1` .
`|5x|lt1`
`-1 lt5xlt1`
Divide each part by `5` :
`(-1)/5 lt(5x)/5lt1/5`
`-1/5ltxlt1/5`
Thus, the power series of the function ` h(x)=1/(1-5x)` centered at `c=0` is `sum_(n=0)^oo(5x)^n` with an interval of convergence: `-1/5 ltxlt1/5` .
Comments
Post a Comment